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• Likelihood Geometry of Determinantal Point Processes (with Bernd Sturmfels and Maksym 
Zubkov) 
 

• The Two Lives of the Grassmannian (with Karel Devriendt, Bernhard Reinke, and Bernd 
Sturmfels) 
 

• Likelihood Geometry of the Squared Grassmannian



Animal Shelter

Jackie walks into an animal shelter and adopts some 
subset of animals at the shelter every day for 100 days. 
Every day, she decides which animals to take home by 
sampling from an unknown probability distribution.

meow
woof



Maximum Likelihood Estimation

Given:

Find:

Since Jackie prefers to take 
home a pair of different 
animals, we assume that 
Jackie is sampling from a 
specific type of distribution 
called a determinantal 
point process (DPP).
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Maximum Likelihood Estimation 
Given: Find:

Lu(q) = ∑
i

ui log(qi) − (∑
i

ui) log (∑
i

qi) .

q ∈ V

The maximum likelihood estimate is the point  which maximizes the log-likelihood function:q

Theorem (Huh-Sturmfels, 2014) The number of critical points of  is generically finite and does 

not depend on . This number is called the maximum likelihood degree (ML degree) of .

Lu(q)
u V



Motivating the Maximum Likelihood Degree

1. The more critical points there are, the harder the problem is to solve. The ML degree is an 
algebraic measure of the difficulty of the problem.  

2. When numerically computing the solution to such an optimization problem, a heuristic 
stopping criterion is applied. Knowing the number of solutions a priori means that we don’t 
need to wait until the criterion is met, so the computation is much faster. 

Lu(q) = ∑
i

ui log(qi) − (∑
i

ui) log (∑
i

qi) .

q ∈ V

Theorem (Huh-Sturmfels, 2014) The number of critical points of  is generically finite and does 

not depend on . This number is called the maximum likelihood degree (ML degree) of .

Lu(q)
u V



Determinantal Point Processes
Let  be a real, symmetric matrix with eigenvalues in . A determinantal point process 
with kernel  is a random variable  with state space  such that 

where  is the  principal submatrix of  obtained from the  rows and columns indexed 

by .

P [0,1]
P Z 2[n]

PI d × d P d
I

ℙ[I ⊆ Z] = det(PI)

Example (n = 3).

ℙ[{1,3} ⊆ Z] = det (p11 p13
p13 p33) = p11p33 − p2

13

ℙ[{2} ⊆ Z] = p22
P =

p11 p12 p13
p12 p22 p23
p13 p23 p33

For maximum likelihood estimation, we need an explicit expression for the probability of 
observing a given set.



Möbius Inversion & L-Ensembles

ℙ[I ⊆ Z] = det(PI)

If  is the kernel of a DPP whose eigenvalues are in , then we define  so thatP (0,1) Θ = P(Idn − P)

ℙ[I = Z] =
det(ΘI)

det(Θ + Idn)
.

 is the hyperdeterminantal variety (Oeding, 2011) and (Al Ahmadieh-Vinzant, 2024)Vn

Lu(q) = ∑
i

ui log(qi) − (∑
i

ui) log (∑
i

qi) q ∈ VnImplicit:

Parametric: Lu(Θ) = ∑
I⊆[n]

uI log(det(ΘI)) − ∑
I⊆[n]

uI log(det(Θ + Idn))

Example.
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u = [5,9,7,5,9,21,36,8] Θ =
a b c
b d e
c e f

Lu(Θ) = 5 log(1) + 9 log(a) + 7 log(d) + 5 log( f )
+9 log(ad − b2) + 21 log(af − c2) + 36 log(df − e2) + 8 log(det(Θ))



Möbius Inversion & L-Ensembles

Theorem (F-Sturmfels-Zubkov, 2023)
The critical points  of the parametric log-likelihood function are found by solving various 
likelihood equations on submodels. If  is generic, their count is 

Θ̂
u

∑
π∈𝒫n

k

∏
i=1

(2|πi|−1ML Degree(V|πi|)) .

Lu(Θ) = 5 log(1) + 9 log(a) + 7 log(d) + 5 log( f )
+9 log(ad − b2) + 21 log(af − c2) + 36 log(df − e2) + 8 log(det(Θ))

59 critical points:

13 ⋅ 22 1 ⋅ 20(1 ⋅ 21)(1 ⋅ 20) (1 ⋅ 21)(1 ⋅ 20) (1 ⋅ 21)(1 ⋅ 20)

n

1 1

2 1

3 13

ML Degree(Vn)



Maximum Likelihood Estimation for DPPs

Eigenvalues of P: in (0,1) in {0,1}

Name: L-Ensemble Projection DPP

Model (variety): Hyperdeterminantal variety Squared Grassmannian

ML Degrees: 1, 13, 3526, >29.5 million,… d=2: 3, 12, 60, 360, 2520, …
d=3:     12, 552, 73440, …  

Parametric critical 
points: ∑

π∈𝒫n

k

∏
i=1

(2|πi|−1ML Degree(V|πi|)) . 2n−1ML Deg(sGr(2,n))



Plücker Coordinates Orthogonal Projection Matrices

Pure Math 
Projective Variety 

Algebraic Combinatorics 
Particle Physics 

⋮

Applied Math 
Affine Variety 

Numerics and Statistics 
Data Science 

⋮

The Two Lives of the Grassmannian

The Grassmannian  is the space of -subspaces of -space.  

What’s the best way to work with  as an algebraic variety? 

Gr(d, n) d n

Gr(d, n)



Plücker Coordinates
 : -dimensional subspace of        :  matrix whose rows span  L d ℝn A d × n L

The Plücker coordinates for  are  for , where  is the  

submatrix of  formed by taking the columns indexed by .

L xI = det(AI) I ⊆ [n], | I | = d AI d × d
A I

Example (d = 2, n = 5).

x12x34 − x13x24 + x14x23 = 0
x12x35 − x13x25 + x15x23 = 0
x12x45 − x14x25 + x15x24 = 0
x13x45 − x14x35 + x15x34 = 0
x23x45 − x24x35 + x25x34 = 0

A = (a11 a12 a13 a14 a15
a21 a22 a23 a24 a25)

xij =
ai1ai2
aj1aj2

= ai1aj2 − aj1ai2

Relations:



Orthogonal Projection Matrices

,  and PT = P P2 = P trace(P) = d .

 : -dimensional subspace of        :  matrix whose columns span   L d ℝn A n × d L

The  matrix  is the unique orthogonal projection matrix onto . n × n P = A(AT A)−1AT L

The matrix  satisfies  P

.ℐ(pGr(d, n)) = ⟨P2 − P, trace(P) − d⟩

Theorem (Devriendt, F., Reinke, Sturmfels 2024).

P =

p11 p12 ⋯ p1n
p12 p22 ⋯ p2n
⋮ ⋮ ⋱ ⋮

p1n p2n ⋯ pnn



Moving Between the Two Lives

Projection matrix P Plücker coordinates x

Take maximal minors of  linearly 
independent rows of 

d
P

Corollary (Devriendt-F-Reinke-Sturmfels, 2024). .det(PI) =
x2

I

∑
J∈([n]

d )
x2

kℓ

pij =
∑

K∈( [n]
k − 1) xiKxjK

∑
I∈([n]

k ) x2
I

(Bloch-Karp, 2023)



The Squared Grassmannian

The squared Grassmannian  is the image of the Grassmannian 
 in its Plücker embedding under the map

sGr(d, n)
Gr(d, n) ⊂ ℙ(n

d)−1 Gr(d, n) → ℙ(n
d)−1

(xI)I∈([n]
d ) ↦ (x2

I )
I∈([n]

d )

0 q12 ⋯ q1n

q12 0 ⋯ q2n
⋮ ⋮ ⋱ ⋮

q1n q2n ⋯ 0

.The prime ideal  is generated by -minors of ℐ(sGr(2,n)) 4
Theorem (Devriendt-F-Reinke-Sturmfels, 2024).

The squared Grassmannian satisfies

dim(sGr(d, n)) = d(n − d), degree(sGr(d, n)) = 2(d−1)(n−d−1)degree(Gr(d, n)) .

The squared Grassmannian  is cut out by quartics derived from hyperdeterminants.sGr(d, n)
Theorem (Al Ahmadieh-Vinzant, 2024).

Definition.



Projection Determinantal Point Processes

ℙ[I = Z] =
det(PI) = x2

I

∑
J∈([n]

d ) x2
J

if | I | = d

0 else

If  is an orthogonal projection matrix, i.e., , then  defines a special kind of 
determinantal point process, namely a projection determinantal point process. 

P P ∈ pGr(d, n) P

The projection determinantal point process is the discrete statistical model on the state 
space         whose underlying algebraic variety is the squared Grassmannian .sGr(d, n)

Corollary (Devriendt-F-Reinke-Sturmfels, 2024).

([n]
d )



Animal Shelter 2.0

Jackie walks into a new animal shelter and adopts 2 of 
the 4 animals at the shelter every day for 100 days. 
Every day, she decides which animals to take home by 
sampling from an unknown probability distribution.

meow
woof



Three Log-Likelihood Functions:

ℙ[Z = {i, j}] = det(Pij) = qij =
x2

ij

∑
1≤k≤ℓ≤n

x2
kℓ

Lu(P) = ∑
i,j

uij log(det(Pij)) − ∑
i,j

uij log ∑
i,j

det(Pij) P ∈ pGr(d, n)

Lu(q) = ∑
i,j

uij log(qij) − ∑
i,j

uij log ∑
i,j

qij q ∈ sGr(2,n)Implicit:

Lu(A) = ∑
i,j

uij log(det(Aij)2) − ∑
i,j

uij log ∑
i,j

det(Aij)2 A = (1 0 a13 ⋯ a1n

0 1 a23 ⋯ a2n)Parametric:



Computing the Maximum Likelihood Estimate

Lu(A) = ∑
i,j

uij log(det(Aij)2) − ∑
i,j

uij log ∑
i,j

det(Aij)2

To compute the maximum likelihood estimate, we find the matrix  maximizing the 
log-likelihood function

A

A = (1 0 a13 a14

0 1 a23 a24)u = [14,11,26,24,9,16]

Lu(A) = 14 log(1) + 11 log(a2
23) + 26 log(a2

24) + 24 log(a2
13) + 9 log(a2

14)

+16 log((a13a24 − a14a23)2) − 100 log(1 + a2
23 + a2

24 + a2
13 + a2

14 + (a13a24 − a14a23)2)

Sample 2-element subsets from .{ , , , }Example (n = 4).
14
11
26
24
9
16



Lu(A) = 14 log(1) + 11 log(a2
23) + 26 log(a2

24) + 24 log(a2
13) + 9 log(a2

14) + 16 log((a13a24 − a14a23)2)

−100 log(1 + a2
23 + a2

24 + a2
13 + a2

14 + (a13a24 − a14a23)2)
∂Lu

∂a13
=

48
a13

+
32a24

a13a24 − a14a23
− 200

a13 + a24(a13a12 − a14a23)
1 + a2

23 + a2
24 + a2

13 + a2
14 + (a13a24 − a14a23)2

= 0

∂Lu

∂a14
=

18
a14

−
32a23

a13a24 − a14a23
− 200

a14 − a23(a13a12 − a14a23)
1 + a2

23 + a2
24 + a2

13 + a2
14 + (a13a24 − a14a23)2

= 0

∂Lu

∂a23
=

22
a23

−
32a14

a13a24 − a14a23
− 200

a23 − a14(a13a12 − a14a23)
1 + a2

23 + a2
24 + a2

13 + a2
14 + (a13a24 − a14a23)2

= 0

∂Lu

∂a24
=

52
a24

+
32a13

a13a24 − a14a23
− 200

a24 + a13(a13a12 − a14a23)
1 + a2

23 + a2
24 + a2

13 + a2
14 + (a13a24 − a14a23)2

= 0

1.

2. Apply monodromy_solve in HomotopyContinuation.jl.

(1 0 1.308 0.802
0 1 0.886 1.361)

(1 0 1.308 0.802
0 1 −0.886 −1.361)

(1 0 −1.308 −0.802
0 1 0.886 1.361 ) (1 0 1.308 −0.802

0 1 0.886 −1.361)
(1 0 −1.308 0.802

0 1 −0.886 1.361)(1 0 −1.308 0.802
0 1 0.886 −1.361)

(1 0 1.308 −0.802
0 1 −0.886 1.361 )

(1 0 −1.308 −0.802
0 1 −0.886 −1.361)

(1 0 0.839 −0.507
0 1 0.584 0.888 ) × 8 (1 0 1.320 1.690

0 1 1.759 1.408) × 8 24 critical points

1
0.786
1.852
1.710
0.643
1.143

,

1
0.341
0.788
0.704
0.257
1.083

,

1
3.093
1.982
1.744
2.855
1.238

det(Aij)2

Computing the Maximum Likelihood Estimate



Three Kinds of MLEs

14

11

26

24

9

16

P* =
0.51 −0.3154 0.3872 −0.0204

−0.3154 0.47 0.0041 0.3867
0.3872 0.0041 0.51 0.3161

−0.0204 0.3867 0.3161 0.51

A* = (1 0 1.308 0.802
0 1 0.886 1.361)

q* =

1
0.786
1.852
1.710
0.643
1.143

∼

0.14
0.110
0.259
0.239
0.090
0.160

(unique up to flipping 
some signs)

(unique up to flipping 
some signs)

(unique)



Lu(A) = ∑
i,j

uij log(det(Aij)2) − ∑
i,j

uij log ∑
i,j

det(Aij)2

Likelihood Geometry of the Squared Grassmannian

The number of complex critical points of the parametric log-likelihood function 

is .2n−2(n − 1)!

Theorem (F, 2024). 

The ML degree of the squared Grassmannian  is  .sGr(2,n)
(n − 1)!

2

Corollary (F, 2024). 

proof of corollary.
The parameterization

(
1 0 a13 ⋯ a1(n−1) a1n

0 1 a23 ⋯ a2(n−2) a2n) ↦ (1,a2
23, a2

24…, (a1(n−1)a2n − a2(n−2)a1n)2)

of the squared Grassmannian is -to- .2n−1 1



Lu(A) = ∑
i,j

uij log(det(Aij)2) − ∑
i,j

uij log ∑
i,j

det(Aij)2

Likelihood Geometry of the Squared Grassmannian

The number of complex critical points of the parametric log-likelihood function 

is .2n−2(n − 1)!

Theorem (F, 2024). 

An = (
1 0 a13 ⋯ a1(n−1) a1n

0 1 a23 ⋯ a2(n−2) a2n) pij = -minor of ij An
Qn = ∑

1≤i<j≤n

p2
ij

Need to show that χ(Xn) = 2n−2(n − 1)!Xn = An ∈ ℂ2(n−2) : Qn( ∏
1≤i<j≤n

pij) ≠ 0

If the very affine variety  is smooth of dimension , then the ML degree of 
 is the signed Euler characteristic .

X \ℋ d
X (−1)d χ(X \ℋ)

proof of theorem.

Theorem (Huh, 2013). 



Likelihood Geometry of the Squared Grassmannian
An = (

1 0 a13 ⋯ a1(n−1) a1n

0 1 a23 ⋯ a2(n−2) a2n) pij = -minor of ij An
Qn = ∑

1≤i<j≤n

p2
ij

Need to show that χ(Xn) = 2n−2(n − 1)!

Xn = An ∈ ℂ2(n−2) : Qn( ∏
1≤i<j≤n

pij) ≠ 0

(
1 0 a13 ⋯ a1 a1(n+1)

0 1 a23 ⋯ a2 a2(n+1)) ↦ (1 0 a13 ⋯ a1n

0 1 a23 ⋯ a2n)
Use induction and the projection πn+1 : Xn+1 → Xn to show that  .χ(Xn+1) = 2nχ(Xn)

The map  is a stratified fibration with stratificationπn+1

𝒮 = {Xn} ∪ {Si : i ∈ [n]} ∪ {Si ∩ Sj : i, j ∈ [n]} where Si = {An ∈ Xn ∣
n

∑
j=1

p2
ij = 0} .

Fiber of :A5 ∈ X5 Fiber of :A5 ∈ Si Fiber of :A5 ∈ Si ∩ Sj



χ(Xn+1) = χ(FXn
)χ(Xn) +

n

∑
i=1

χ(Si) ∑
S′￼∈{Si,Xn}

μ(Si, S′￼)(χ(FS′￼
) − χ(FXn

)

+ ∑
1≤i<j≤n

χ(Si ∩ Sj) ∑
S′￼∈{Si∩Sj,Si,Sj,Xn}

μ(Si ∩ Sj, S′￼)(χ(FS′￼
) − χ(FXn

)

Likelihood Geometry of the Squared Grassmannian

χ(FXn
) = 2n χ(Fi) = 2n − 2 χ(Fij) = 2n − 4

Fiber of :A5 ∈ X5 Fiber of :A5 ∈ Si Fiber of :A5 ∈ Si ∩ Sj

Xn

Si Sj

Si ∩ Sj

μ(Si ∩ Sj, Si) = − 1

μ(Si ∩ Sj, Xn) = 1

μ(Si ∩ Sj, Sj) = − 1

μ(Si ∩ Sj, Si ∩ Sj) = 1
(2n − 2n) − 2(2n − 2 − 2n) + (2n − 4 − 2n) = 0

0

0

= χ(FXn
)χ(Xn) = 2n(χ(Xn))



Real and Positive Solutions

(1 0 1.308 0.802
0 1 0.886 1.361)

(1 0 0.839 −0.507
0 1 0.584 0.888 )

(1 0 1.320 1.690
0 1 1.759 1.408)

1
0.786
1.852
1.710
0.643
1.143

,

1
0.341
0.788
0.704
0.257
1.083

,

1
3.093
1.982
1.744
2.855
1.238

Parametric Critical Points Implicit Critical pointsExample
× 8
× 8
× 8

All critical points are real and positive. Every critical point is a local 
maximum of the likelihood function.

Theorem (F, 2024). 

proof.
Squaring means real parametric critical points imply positive critical points.

The likelihood function                                          is nonnegative and so ℓu(A) =
∏i,j det(Aij)2uij

(∑i,j det(Aij)2)
∑ij ui, j

has at least one local maximum in every region, bounded or unbounded, of 
.ℝ2(n−2)\⋃

i,j

{det(Aij) = 0}



1. Choose how many columns have two different signs (  choices) 
 

2. Permute the last  columns (  choices).  

3. Flip the signs of any of the last  columns (  choices).

n − 1

n − 2 (n − 2)!

n − 2 2n−2

Real and Positive Solutions

ℝ2(n−2)\⋃
i,j

{det(Aij) = 0}The space                                            has  connected regions.2n−2(n − 1)!Claim.

The regions are in bijection with the possible sign vectors that can arise 
from a vector of Plücker coordinates in . Gr(2,n)

An = (
1 0 −a13 ⋯ −a1k a1(k+1) ⋯ a1n

0 1 a23 ⋯ a2k a2(k+1) ⋯ a2n)



Recap

•  Maximum likelihood estimation over DPPs is hard and there are many extraneous 
parametric critical points. 

• The Grassmannian has two lives as an algebraic variety: one in applied settings and one in 
algebraic geometry. 

• The squared Grassmannian is a model for projection determinantal point processes.  

• The squared Grassmannian is one of the first examples of a model on which the likelihood 
function has the property that all of its critical points are local maxima. 
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