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Example: Euclidean Distance

Let u be a point in R?. What is the closest point to u on the unit circle?

Function ‘
\_/_\

minimize ||x—u] | ‘_// u

subject to | | x| | Cr|t|cal Pomts

Variety

Lagrange Multiplier k
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Lagrange Multipliers
Any optimal solution X to the following optimization problem
maximize f(X)
subject to G(X) = (gl(X) gk(X))T =0
must satisfy V.Z(x) = 0 where <L (x, 1) = f(x) — Z A.8(X).

V.Lx.2) = { VAX) = 2 4Vg(x) =0 - {rank (Jac(G(x)) | Vf(x)) = rank Jac(G(x))

g1(X) = -+ = gy (x) =0 G(x) =0

where Jac(G(X)) = (Vgl(x) ng(x)).



Algebraic Degree of an Optimization Problem

Optimization Problem Critical Points
optimize  f(x) * rank (Jac(G(x)) | Vf(x)) = rank Jac(G(x))
subject to G(x) =0 Gx)=0

X

Definition. The algebraic degree of an optimizatior\
problem is the number of critical points.

often O-dimensional

When the variety is not zero dimensional, its degree
can still give an idea of the complexity of the problem.

The algebraic degree of a problem is a proxy for the
difficulty of correctly solving the problem.



Degrees of Optimization Problems

optimize  f(X)
subject to G(x) = 0
Fixed f(x):
v/ X =|Ix—u||* Euclidean Distance Degree Sum of Polar Degrees

fu® =) ulog(x)  Maximum Likelihood Degree Euler Characteristic
fu®) = 2 X Linear Optimization Degree First Polar Degree



1e Grassmannian

The Grassmannian Gr(k, n) is the space of k-subspaces of n-space.

What'’s the best way to work with Gr(k, n)?

« Equivalence classes of n X kK matrices with the same column span
« Plucker coordinates

- Orthogonal projection matrices



The Two Lives of the Grassmannian

Pliicker Coordinates Orthogonal Projection Matrices
Pure Math Applied Math
Projective Variety Affine Variety
Algebraic Combinatorics Numerics and Statistics
Particle Physics Data Science

For more on different embeddings of the Grassmannian, check out my recent paper!
“The Two Lives of the Grassmannian,” arXiv:2401.03684



Licker Coordinates
L : k-dimensional subspace of R” A : n X k matrix whose columns span L

The Plicker coordinates for L are x; = det(A,) for I C [n], | I| = k, where A,
is the k X k submatrix of A formed by taking the rows indexed by 1.

ample (k=2, n=5).

X1rXas — X1aXos + X14Xr2 = 0
(ay, ap,) 12X34 13%24 14X23

4y, dy = det di1dip X1pX35 = X13X5 + X5Xp3 = 0
x; = de

A= |31 a3 4192 X1Xg5 = X14%p5 + Xy5%p4 = 0
41 Agp — — _ —
= d;j1dp — djdp X13%45 = X14%35 + Xy 5%34 = 0
\451 442

Xy3Xys = XogX3s + XpsX3s =0



Orthogonal Projection Matrices

L : k-dimensional subspace of R” A : n X k matrix whose columns span L

The n X n matrix P = A(ATA)~'A” is the unique projection matrix onto L.
The matrix P satisfies
PT = P, P? = P and trace(P) = k.

If a symmetric matrix P satisfies the above equations, it is the projection
matrix onto some k-dimensional subspace, so the projection Grassmannian is

pGr(k,n) = 7 ((PT — P, P> — P, trace(P) — k)).

Theorem. (Devriendt, F., Reinke, Sturmfels 2024)
F(pGr(k,n)) = (PT — P, P> — P, trace(P) — k).



Moving Between the Two Lives

Projection matrix P Plicker coordinates X

Take maximal minors of the first k rows of P
>

Lemma. (Bloch, Karp 2023)

X X;
ZKe<kml> iK"jK

pij

zE([Z])sz



Two Maximum Likelihood Problems on the Grassmannian

maximize Z u;log (x,) maximize Z u;log (q,)
1§<[Z]> Ig([zl>
subject to x € Gr(k, n) subject to q € sGr(k, n)
sGr(k, n) = {(xf)]E () | G, () € Gr(k, n)}
Maximum Likelihood Degrees: Maximum Likelihood Degrees:
n=4 n=5 n=6 n=7 n=3 n=4 n=5 n=6 n=7 n=38
k=2 4 22 156 1368 14400 k=2 3 12 60 360 2520

The lower maximum likelihood degrees indicate that the model on therightis a
natural probability model: it is an example of a determinantal point process!



Probability Distributions on the Grassmannian

Let P be a real, symmetric matrix with eigenvalues in [0,1]. A determinantal
point process with kernel P is a random variable Z on 2" such that

Pl C Z] = det(P))
where P;is the k X k principal submatrix of P obtained by selecting the k
rows and columns indexed by 1.

Example (n = 3).

(P11 P2 P3) P[{2) CZ] = py,
P=1|P12 Pxn P P11 P13

”:D 173 CZ =det - — 2
P13 P P33 1.3} € 2] <P13 P33> PriPss = Prs




Probability Distributions on the Grassmannian

Relationship between Plicker embedding
and projection matrix embedding

r

det(P)) = — if 17l =k
P& pGrtk.m), then  Pr=z] =4 07 T 0 1]

[k]
0 else

L

X

u log <q1> is the log likelihood function for a determinantal

; <[ ]> point process with kernel in pGr(k, n)!
Sk



Degrees of Optimization Problems

optimize  f(X)
subject to G(x) = 0
Fixed f(x):
v/ X =|Ix—u||* Euclidean Distance Degree Sum of Polar Degrees

/ fux) = Z u;log(x;) Maximum Likelihood Degree Euler Characteristic
JuX) = 2 U;X; Linear Optimization Degree First Polar Degree



Eigenvalue Problem

Let M be real, symmetric, positive definite n X n matrix

with eigenvalues A; > 4, > -+ > 4.

Goal: compute an n X k matrix X = [X;---X;] such that
MXZ — /1le for i — 1,..., k.

maximize trace(X! MX)

subject to XX = Id,.



Critical Points of the Eigenvalue Problem

. T
maximize trace(X' MX) {rank (Jac(G(x)) | VA(x)) = rank Jac(G(x))

subjectto X' X =1d; « (x,x;) = ; Gx) =0

The critical points of this problem are matrices (Mxl\

X satisfying X7X = Id, and Vtrace(X' MX) =2 is in column span of

\Mxk )
( _1)
<X1’X.1> ! (2X1 X, X3 - X \
: 2
(%px) = 1] _ & . o X
Jac = 2X;5 X X,
(X1, X)) X,
2X X X e X;

KXy )N g : 2 k=1)




Critical Points of the Eigenvalue Problem

Let ® € O(k), where O(k) is the group of
orthogonal k X k matrices. Then

trace(® X' MX0O) = trace(X' MXOO') = trace(X’ MX)

X'X=1d, = 0'X'X0 =00 =1d,




Critical Points of the Eigenvalue Problem

Theorem. (F., Hosten 2024+) Let M be a generic real symmetric n X n matrix

and let X be an n X k variable matrix. The algebraic set of complex critical
points of the eigenvalue optimization problem is

|| (g4, -+ 9,10 : © € O(K))
{il,...,ik}e<[z])

where q, ..., g, is an orthonormal eigenbasis of M. This algebraic set is a

disjoint union of (’;) irreducible varieties isomorphic to O(k), and hence its

dimension is equal to dim(O(k)) and its degree is equal to deg(O(k)) - (Z)



Critical Points of the Eigenvalue Problem

Example. The variety O(2) is the disjoint union of two circles, so the critical
points of the eigenvalue problem for k = 2 are

OO 0O .0
O O O O

{192} {1a3} {1,4} {I’l— 1,I’l}

n
This variety has degree 4 2).



Rethinking Our Formulation

Optimizing over
specific sets of
basis vectors for
our space

Optimizing over
coordinate-free
representations
of our space




Rethinking Our Formulation

O ptl m | ZI N g over FIGURE 1. Converger;fizf:e:::eilor of algorithms in the Stlie\zit;r;d mi(r)ld\;cl)lu‘cion models.
specific sets of —o| —
basis vectors for — e —c
our space . =

0 T oy
Optimizing over
coordinate-free w4 _
representations I 00 T 0

of our space

“Simpler Grassmannian Optimization”
by Lai, Lim, and Ye
arXiv:2009.13502



Orthogonal Projection Matrices

L : k-dimensional subspace of R” A : n X k matrix whose columns span L

The n X n matrix P = A(ATA)~'A” is the unique projection matrix onto L.

The matrix P satisfies
PT = P, P? = P and trace(P) = k.

If a symmetric matrix P satisfies the above equations, it is the projection
matrix onto some k-dimensional subspace, so the projection Grassmannian is

pGr(k,n) = V(P! — P, P? — P, trace(P) — k)).



Eigenvalue Problem on the Projection Grassmannian
Since the columns of X are orthonormal, we have
P=XX"X)"'XT = Xid, XT = xx°.

maximize trace(XMX'") = trace(MXX") maximize trace(MP)
ﬁ .
subject to X' X = Id,. subject to P € pGr(k, n)

QO

{iy, ..., i}




Eigenvalue Problem on the Projection Grassmannian

Theorem. (F., Hosten 2024+) Let M be a generic real symmetricn X n
matrix and let X be an n X k variable matrix. The algebraic set of complex

critical points of the eigenvalue optimization problem over pGr(k, n) is

{[qil in coe qik][qilqiz ces qik]Tl {il’ ...,ik} & <[Z]>}

where qy, ..., g, is an orthonormal eigenbasis of M. Therefore the degree

n
of the eigenvalue optimization problem over pGr(k, n) is <k>



Eigenvalue Problem on the Projection Grassmannian

If the columns of X form an orthonormal basis for the subspace, then we have

P=XX"X)"'XT = Xid, XT = xx".

maximize trace(MXX' . @
( ) —_— maX|m|ze-

subject to X' X = Id. subject to P € pGr(k, n)

QO

{ifsoeori)

Eigenspaces can be found by linear optimization over the Grassmanian!

{iy, ..., 0}



“Eigendegree” = LO Degree

Example (n=3). myp My my3 P11 P12 P13
M= |my ny, Nys P=1|P12 P D23
my3 Myy HMsj P13 P23 P33

trace(MP) = my;pyy + 2myypiy + 2my3pi3 + My Pyy + 2miy3pp3 + Miz3ps;
= U1P11 T UppPro T U3P13 T UppPyp + Up3Pr3 + Uz3 P33

Uy =my U =2my,
Uyy = My, Uz = 2my;3

Usz = M3z Upy = 2my3



“Eigendegree” = LO Degree

maximize trace(MP) —p maximize Z U;iDij
subject to P € pGr(k, n) subject to P € pGr(k, n)

We can write the objective function as a generic linear form over pGr(k, n):
trace(MP) = Z W;D;j
<]
where {2mij ifi #J



Eigenvalue Problem on the Projection Grassmannian

degree of the eigenvalue __ linear optimization __ (n>
- \k

problem over pGr(k, n) —  degree of pGr(k, n)

trace(MP) f(x) = Z w;p;



Beyond the Grassmannian

Definition. The complete flag variety, denoted F1(0,1,..., k; n), is
the space of nested subspaces of dimension 0,1,..., kin R".

Example. A point in F1(0,1,2; 3).

Proposition. (Ye, Wong, Lim 2022)
pFI(0,1,...,k;n) = {(Py, ..., P) | P, \P; = P;, P? = P, trace(P,) = i}



Extending to Flag Varieties

degree of the eigenvalue __ linear optimization __ (n>
problem over pGr(k, n) ~  degreeofpGr(k,n) k

degree of the
heterogeneous quadrics __ linear optimization - 999
minimization problem - degree of pFI(1,.... k;n) ..

over pFI(1,..., k; n)



Heterogeneous Quadrics Minimization Problem

Given k generic real symmetric n X n matrices M, ..., M,,
k k
maximize Z x; Mx; maximize Z trace(M.P,)

i=1 i=1
subject to XX = Id, subject to (P, ..., P,) € pFI(0,1,..., k; n)



Compute!

o e R
k

maximize Z XiTMin- n—1
. 40 112 240 440 728 4 Z 252
T =l
subject to X* X = Id, E 960 5536 21,440 777 2222227

These numbers were produced with HomotopyContinuation. j1.



Degrees of Optimization Problems

optimize  f(X)
subject to G(x) = 0
Fixed f(x):
v/ X =|Ix—u||* Euclidean Distance Degree Sum of Polar Degrees

/ fux) = Z u;log(x;) Maximum Likelihood Degree Euler Characteristic
v/ W= D ux, Linear Optimization Degree First Polar Degree
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Thank you!




