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Example: Euclidean Distance
Let  be a point in . What is the closest point to  on the unit circle?u ℝ2 u

minimize    

subject to 

| |x − u | |2

| |x | |2 = 1

2(x1 − u1) + 2λx1 = 0
2(x2 − u2) + 2λx2 = 0

x2
1 + x2

2 − 1 = 0
x = ± 1

| |u | |
u

Lagrange Multiplier

Function
Variety

Critical Points



maximize   

subject to 

f(x)

G(x) = (g1(x) ⋯ gk(x))T = 0

Lagrange Multipliers
Any optimal solution  to the following optimization problem x

must satisfy  where .∇ℒ(x) = 0 ℒ(x, λ) = f(x) − ∑ λigi(x)

{rank (Jac(G(x)) ∣ ∇f(x)) = rank Jac(G(x))
G(x) = 0

∇ℒ(x, λ) = {∇f(x) − ∑ λk ∇gk(x) = 0
g1(x) = ⋯ = gk(x) = 0

where .Jac(G(x)) = (∇g1(x) ⋯ ∇gk(x))



Algebraic Degree of an Optimization Problem

optimize     

subject to  

f(x)

G(x) = 0

Critical PointsOptimization Problem

Definition. The algebraic degree of an optimization 
problem is the number of critical points.

often -dimensional0

When the variety is not zero dimensional, its degree 
can still give an idea of the complexity of the problem.

rank (Jac(G(x)) ∣ ∇f(x)) = rank Jac(G(x))
G(x) = 0

The algebraic degree of a problem is a proxy for the 
difficulty of correctly solving the problem.



Degrees of Optimization Problems
optimize      

subject to  

f(x)

G(x) = 0

Fixed  :f(x)

Euclidean Distance Degree        

Maximum Likelihood Degree 

Linear Optimization Degree 

                                                               ⋮

 fu(x) = ∑ ui log(xi)

fu(x) = | |x − u | |2

 fu(x) = ∑ uixi

⋮

Sum of Polar Degrees 

Euler Characteristic 

First Polar Degree 

                                                    ⋮



The Grassmannian  is the space of -subspaces of -space.  

What’s the best way to work with ? 

Gr(k, n) k n

Gr(k, n)

• Equivalence classes of  matrices with the same column span 

• Plücker coordinates 

• Orthogonal projection matrices

n × k

The Grassmannian



Plücker Coordinates Orthogonal Projection Matrices

Pure Math 
Projective Variety 

Algebraic Combinatorics 
Particle Physics 

⋮

Applied Math 
Affine Variety 

Numerics and Statistics 
Data Science 

⋮

For more on different embeddings of the Grassmannian, check out my recent paper!  
“The Two Lives of the Grassmannian,” arXiv:2401.03684 

The Two Lives of the Grassmannian



Plücker Coordinates
 : -dimensional subspace of        :  matrix whose columns span  L k ℝn A n × k L

The Plücker coordinates for  are  for , where  
is the  submatrix of  formed by taking the rows indexed by .

L xI = det(AI) I ⊆ [n], | I | = k AI
k × k A I

Example (k = 2, n = 5).

x12x34 − x13x24 + x14x23 = 0
x12x35 − x13x25 + x15x23 = 0
x12x45 − x14x25 + x15x24 = 0
x13x45 − x14x35 + x15x34 = 0
x23x45 − x24x35 + x25x34 = 0

A =

a11 a12
a21 a22
a31 a32
a41 a42
a51 a42

xij = det (ai1ai2
aj1aj2)

= ai1aj2 − aj1ai2



Orthogonal Projection Matrices

If a symmetric matrix  satisfies the above equations, it is the projection 
matrix onto some -dimensional subspace, so the projection Grassmannian is 

P
k

,  and PT = P P2 = P trace(P) = k .

.pGr(k, n) = 𝒱(⟨PT − P, P2 − P, trace(P) − k⟩)

 : -dimensional subspace of        :  matrix whose columns span   L k ℝn A n × k L

The  matrix  is the unique projection matrix onto . n × n P = A(AT A)−1AT L

The matrix  satisfies  P

.ℐ(pGr(k, n)) = ⟨PT − P, P2 − P, trace(P) − k⟩
Theorem. (Devriendt, F., Reinke, Sturmfels 2024)



Moving Between the Two Lives

Projection matrix P Plücker coordinates x

Take maximal minors of the first  rows of k P

pij =
∑

K∈( [n]
k − 1) xiKxjK

∑
I∈([n]

k ) x2
I

Lemma. (Bloch, Karp 2023)



Two Maximum Likelihood Problems on the Grassmannian

maximize  

subject to 

∑
I⊆([n]

k )
uI log (xI)

x ∈ Gr(k, n)

maximize  

subject to 

∑
I⊆([n]

k )
uI log (qI)

q ∈ sGr(k, n)

Maximum Likelihood Degrees: Maximum Likelihood Degrees: 

n = 4 n = 5 n = 6 n = 7 n = 8
k = 2 4 22 156 1368 14400

n = 4 n = 5 n = 6 n = 7 n = 8
k = 2 3 12 60 360 2520

The lower maximum likelihood degrees indicate that the model on the right is a 
natural probability model: it is an example of a determinantal point process!

sGr(k, n) = {(x2
I )

I∈([n]
k ) ∣ (xI)I∈([n]

k ) ∈ Gr(k, n)}



Probability Distributions on the Grassmannian
Let  be a real, symmetric matrix with eigenvalues in . A determinantal 
point process with kernel  is a random variable  on  such that 

 where  is the  principal submatrix of  obtained by selecting the  
rows and columns indexed by .

P [0,1]
P Z 2[n]

PI k × k P k
I

ℙ[I ⊆ Z] = det(PI)

P =
p11 p12 p13
p12 p22 p23
p13 p23 p33

Example (n = 3).

ℙ[{1,3} ⊆ Z] = det (p11 p13
p13 p33) = p11p33 − p2

13

ℙ[{2} ⊆ Z] = p22



Probability Distributions on the Grassmannian

ℙ[I = Z] =
det(PI) = x2

I

∑
J∈([n]

[k]) x2
J

= qI if | I | = k

0 else

If , then P ∈ pGr(k, n)

 ∑
I⊆([n]

k )
uI log (qI) is the log likelihood function for a determinantal 

point process with kernel in !pGr(k, n)

Relationship between Plücker embedding 
and projection matrix embedding



Degrees of Optimization Problems
optimize      

subject to  

f(x)

G(x) = 0

Fixed  :f(x)

Euclidean Distance Degree        

Maximum Likelihood Degree 

Linear Optimization Degree 

                                                               ⋮

 fu(x) = ∑ ui log(xi)

fu(x) = | |x − u | |2

 fu(x) = ∑ uixi

⋮

Sum of Polar Degrees 

Euler Characteristic 

First Polar Degree 

                                                    ⋮



Eigenvalue Problem

Let  be real, symmetric, positive definite  matrix 
with eigenvalues . 

Goal: compute an  matrix  such that 

 for .

M n × n
λ1 > λ2 > ⋯ > λn

n × k X = [x1⋯xk]
Mxi = λixi i = 1,…, k

maximize    

subject to  .

trace(XTMX)

XTX = Idk



Critical Points of the Eigenvalue Problem
maximize    

subject to  

trace(XTMX)

XTX = Idk

The critical points of this problem are matrices 
 satisfyingX ∇trace(XTMX) = 2

Mx1
⋮

Mxk

is in column span of

Jac

⟨x1, x1⟩ − 1
⋮

⟨xk, xk⟩ − 1
⟨x1, x2⟩

⋮
⟨xk−1, xk⟩

=

2x1 x2 x3 ⋯ xk ⋯
2x2 x1 x3 ⋯ xk

2x3 x1 x2 ⋯
⋱ ⋱ ⋱ xk

2xk x1 x2 ⋯ xk−1

.

XTX = Idk and ∇trace(XTMX)

Jac

⟨x1, x1⟩ − 1
⋮

⟨xk, xk⟩ − 1
⟨x1, x2⟩

⋮
⟨xk−1, xk⟩

⟨xi, xj⟩ = δij {rank (Jac(G(x)) ∣ ∇f(x)) = rank Jac(G(x))
G(x) = 0



Critical Points of the Eigenvalue Problem

trace(ΘTXTMXΘ) = trace(XTMXΘΘT) = trace(XTMX)

Let , where  is the group of 
orthogonal  matrices. Then

Θ ∈ O(k) O(k)
k × k

XTX = Idk ⟹ ΘTXTXΘ = ΘTΘ = Idk



Critical Points of the Eigenvalue Problem

Theorem. (F., Hoşten 2024+) Let  be a generic real symmetric  matrix 
and let  be an  variable matrix. The algebraic set of complex critical 
points of the eigenvalue optimization problem is  

                              

where  is an orthonormal eigenbasis of . This algebraic set is a 

disjoint union of  irreducible varieties isomorphic to , and hence its 

dimension is equal to  and its degree is equal to .

M n × n
X n × k

⨆
{i1,…,ik}∈([n]

k )
{[qi1 qi2 ⋯ qik]Θ : Θ ∈ O(k)}

q1, …, qn M

(n
k) O(k)

dim(O(k)) deg(O(k)) ⋅ (n
k)



Critical Points of the Eigenvalue Problem
Example. The variety  is the disjoint union of two circles, so the critical 
points of the eigenvalue problem for  are

O(2)
k = 2

…
{1,2} {1,3} {n − 1,n}{1,4}

This variety has degree  .4(n
2)



Rethinking Our Formulation

Optimizing over 
specific sets of 
basis vectors for 
our space

Optimizing over 
coordinate-free 
representations 
of our space



Rethinking Our Formulation

Optimizing over 
specific sets of 
basis vectors for 
our space

Optimizing over 
coordinate-free 
representations 
of our space

“Simpler Grassmannian Optimization”  
by Lai, Lim, and Ye 
arXiv:2009.13502 



Orthogonal Projection Matrices

If a symmetric matrix  satisfies the above equations, it is the projection 
matrix onto some -dimensional subspace, so the projection Grassmannian is 

P
k

,  and PT = P P2 = P trace(P) = k .

.pGr(k, n) = V(⟨PT − P, P2 − P, trace(P) − k⟩)

 : -dimensional subspace of        :  matrix whose columns span   L k ℝn A n × k L

The  matrix  is the unique projection matrix onto . n × n P = A(AT A)−1AT L

The matrix  satisfies  P



Eigenvalue Problem on the Projection Grassmannian

maximize    

subject to  .

trace(XMXT) = trace(MXXT)

XTX = Idk

Since the columns of  are orthonormal, we haveX

P = X(XTX)−1XT = XIdkXT = XXT .

maximize    

subject to  

trace(MP)

P ∈ pGr(k, n)

{i1, …, ik}
{i1, …, ik}



Theorem. (F., Hoşten 2024+) Let  be a generic real symmetric  
matrix and let  be an  variable matrix. The algebraic set of complex 
critical points of the eigenvalue optimization problem over  is  

 

where  is an orthonormal eigenbasis of . Therefore the degree 

of the eigenvalue optimization problem over  is .

M n × n
X n × k

pGr(k, n)

{[qi1 qi2 ⋯ qik][qi1 qi2 ⋯ qik]
T ∣ {i1, …, ik} ∈ ([n]

k )}
q1, …, qn M

pGr(k, n) (n
k)

Eigenvalue Problem on the Projection Grassmannian



maximize    

subject to  .

trace(MXXT)

XTX = Idk

If the columns of  form an orthonormal basis for the subspace, then we haveX

P = X(XTX)−1XT = XIdkXT = XXT .

maximize    

subject to  

trace(MP)

P ∈ pGr(k, n)

Eigenspaces can be found by linear optimization over the Grassmanian! 
{i1, …, ik}

{i1, …, ik}

Eigenvalue Problem on the Projection Grassmannian



Example (n = 3).
M =

m11 m12 m13
m12 m22 m23
m13 m23 m33

P =
p11 p12 p13
p12 p22 p23
p13 p23 p33

trace(MP) = m11p11 + 2m12p12 + 2m13p13 + m22p22 + 2m23p23 + m33p33

“Eigendegree” = LO Degree

u11 = m11 u12 = 2m12

u22 = m22 u13 = 2m13

u33 = m33 u23 = 2m23

= u11p11 + u12p12 + u13p13 + u22p22 + u23p23 + u33p33



“Eigendegree” = LO Degree

maximize    

subject to                   

trace(MP)

P ∈ pGr(k, n)

We can write the objective function as a generic linear form over :pGr(k, n)

trace(MP) = ∑
i≤j

uijpij

where 
uij = {

2mij if i ≠ j
mij if i = j

maximize    

subject to 

∑ uijpij

P ∈ pGr(k, n)



degree of the eigenvalue 
problem over pGr(k, n) = linear optimization 

degree of pGr(k, n) = (n
k)

 fu(x) = ∑ uijpijtrace(MP)

Eigenvalue Problem on the Projection Grassmannian



Beyond the Grassmannian
Definition. The complete flag variety, denoted , is 
the space of nested subspaces of dimension  in .

Fl(0,1,…, k; n)
0,1,…, k ℝn

Example. A point in .Fl(0,1,2; 3)

pFl(0,1,…, k; n) = {(P1, …, Pk) ∣ Pi+1Pi = Pi, P2
i = Pi, trace(Pi) = i}

Proposition. (Ye, Wong, Lim 2022)



Extending to Flag Varieties

degree of the eigenvalue 
problem over pGr(k, n) = linear optimization 

degree of pGr(k, n) = (n
k)

degree of the 
heterogeneous quadrics 
minimization problem 
over pFl(1,…, k; n)

linear optimization 
degree of pFl(1,…, k; n)= = ???



Heterogeneous Quadrics Minimization Problem

maximize  

subject to 

k

∑
i=1

trace(MiPi)

(P1, …, Pk) ∈ pFl(0,1,…, k; n)

Given  generic real symmetric  matrices k n × n M1, …, Mk,

maximize  

subject to 

k

∑
i=1

xT
i Mixi

XTX = Idk



Compute!

n = 3 n = 4 n = 5 n = 6 n = 7 n

k = 2 40 112 240 440 728

k = 3 960 5536 21,440 ??? ???????

Degrees of the problem

maximize  

subject to 

k

∑
i=1

xT
i Mixi

XTX = Idk

4
n−1

∑
j=1

2j2

These numbers were produced with HomotopyContinuation.jl.



Degrees of Optimization Problems
optimize      

subject to  

f(x)

G(x) = 0

Fixed  :f(x)

Euclidean Distance Degree        

Maximum Likelihood Degree 

Linear Optimization Degree 

                                                               ⋮

 fu(x) = ∑ ui log(xi)

fu(x) = | |x − u | |2

 fu(x) = ∑ uixi

⋮

Sum of Polar Degrees 

Euler Characteristic 

First Polar Degree 

                                                    ⋮



References

Maximum Likelihood Degree

Linear Optimization Degree

Euclidean Distance Degree

The Grassmannian and Flags

“Linear Optimization on Varieties and Chern-Mather Classes” 

by  Maxim, Rodriguez, Wang, Wu

“The Maximum Likelihood Degree” 

by  Catanese, Hoşten, Khetan, Sturmfels

“The Euclidean Distance Degree of an Algebraic Variety” 

by  Draisma, Horobeț, Ottaviani, Sturmfels, Thomas 

“The Two Lives of the Grassmannian” 

by Devriendt, F. Reinke, Sturmfels 

“Simpler Grassmannian Optimization” 

by Lai, Lim, and Ye

“Gradient Flows, Adjoint Orbits, and the 
Topology of Totally Nonnegative Flag 
Varieties” 

by Bloch and Karp

“Optimization on Flag Manifolds” 

by Ye, Wong, and Lim



Thank you!


