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Likelihood Geometry of the 
Squared Grassmannian



Animal Shelter

Jackie walks into an animal shelter and adopts 2 of the 
4 animals at the shelter every day for 100 days. Every 
day, she decides which animals to take home by 
sampling from an unknown probability distribution.

meow
woof



Maximum Likelihood Estimation
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Given:

Find:

Since Jackie prefers to take 
home a pair of different 
animals, we assume that 
Jackie is sampling from a 
specific type of distribution 
called a projection 
determinantal point 
process (projection DPP).



Projection Determinantal Point Processes
Example Projection DPPs with state space are parameterized by symmetric matrices ([4]

2 )

P =

p11 p12 p13 p14
p12 p22 p23 p24
p13 p23 p33 p34
p14 p24 p34 p44

satisfying
P2 = P

trace(P) = 2

and the distribution is defined by

ℙij = det(Pij) = piipjj − p2
ij .

The definition is the same for projection DPPs with state space 

—just take  to be an  matrix.

([n]
2 )

P n × n



Two Lives of the Grassmannian

Orthogonal Projection Matrices

P = AT(AAT)−1A

Plücker Coordinates

x = (det(Aij))1≤i<j≤n

Lemma (Devriendt-F-Reinke-Sturmfels, 2024)

.ℙij = det(Pij) =
x2

ij

∑
1≤k<ℓ≤n

x2
kℓ

Definition The Grassmannian  is the variety of 2-dimensional subspaces of .Gr(2,n) ℝn

Every point in  is the row span of some , but this representation 
is not unique.

Gr(2,n) A ∈ ℝ2×n



Computing the Maximum Likelihood Estimate
Every 2-dimensional subspace of  determines a projection DPP byℝn

A = (1 0 a13 ⋯ a1n

0 1 a23 ⋯ a2n) ℙij = det(Pij) =
det(Aij)2

∑
1≤k<ℓ≤n

(Akℓ)2
.

Lu(A) = ∑
i,j

uij log(det(Aij)2) − ∑
i,j

uij log ∑
i,j

det(Aij)2 .

To compute the maximum likelihood estimate, we find the matrix  which maximizes 
the log-likelihood function

A

Example (n = 4)

A = (1 0 a13 a14

0 1 a23 a24) u = [14,11,26,24,9,16]

Lu(A) = 14 log(1) + 11 log(a2
23) + 26 log(a2

24) + 24 log(a2
13) + 9 log(a2

14) + 16 log((a13a24 − a14a23)2)

−100 log(1 + a2
23 + a2

24 + a2
13 + a2

14 + (a13a24 − a14a23)2)

14
11
26
24
9
16



Lu(A) = 14 log(1) + 11 log(a2
23) + 26 log(a2

24) + 24 log(a2
13) + 9 log(a2

14) + 16 log((a13a24 − a14a23)2)

−100 log(1 + a2
23 + a2

24 + a2
13 + a2

14 + (a13a24 − a14a23)2)
∂Lu

∂a13
=

48
a13

+
32a24

a13a24 − a14a23
− 200

a13 + a24(a13a12 − a14a23)
1 + a2

23 + a2
24 + a2

13 + a2
14 + (a13a24 − a14a23)2

= 0

∂Lu

∂a14
=

18
a14

−
32a23

a13a24 − a14a23
− 200

a14 − a23(a13a12 − a14a23)
1 + a2

23 + a2
24 + a2

13 + a2
14 + (a13a24 − a14a23)2

= 0

∂Lu

∂a23
=

22
a23

−
32a14

a13a24 − a14a23
− 200

a23 − a14(a13a12 − a14a23)
1 + a2

23 + a2
24 + a2

13 + a2
14 + (a13a24 − a14a23)2

= 0

∂Lu

∂a24
=

52
a24

+
32a13

a13a24 − a14a23
− 200

a24 + a13(a13a12 − a14a23)
1 + a2

23 + a2
24 + a2

13 + a2
14 + (a13a24 − a14a23)2

= 0

1.

2. Apply monodromy_solve in HomotopyContinuation.jl.

(1 0 1.308 0.802
0 1 0.886 1.361)

(1 0 1.308 0.802
0 1 −0.886 −1.361)

(1 0 −1.308 −0.802
0 1 0.886 1.361 ) (1 0 1.308 −0.802

0 1 0.886 −1.361)
(1 0 −1.308 0.802

0 1 −0.886 1.361)(1 0 −1.308 0.802
0 1 0.886 −1.361)

(1 0 1.308 −0.802
0 1 −0.886 1.361 )

(1 0 −1.308 −0.802
0 1 −0.886 −1.361)

(1 0 0.839 −0.507
0 1 0.584 0.888 ) × 8 (1 0 1.320 1.690

0 1 1.759 1.408) × 8 24 critical points

1
0.786
1.852
1.710
0.643
1.143

,

1
0.341
0.788
0.704
0.257
1.083

,

1
3.093
1.982
1.744
2.855
1.238

det(Aij)2

Computing the Maximum Likelihood Estimate



Three Kinds of MLEs
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P* =
0.51 −0.3154 0.3872 −0.0204

−0.3154 0.47 0.0041 0.3867
0.3872 0.0041 0.51 0.3161

−0.0204 0.3867 0.3161 0.51

A* = (1 0 1.308 0.802
0 1 0.886 1.361)

q* =

1
0.786
1.852
1.710
0.643
1.143

∼

0.14
0.110
0.259
0.239
0.090
0.160

(unique up to flipping 
some signs)

(unique up to flipping 
some signs)

(unique)



…is a model for projection DPPs!

The Squared Grassmannian…

Definition The squared Grassmannian  is the image of the Grassmannian 
 in its Plücker embedding under the map

sGr(2,n)
Gr(2,n) ⊂ ℙ(n

2)−1 Gr(2,n) → ℙ(n
2)−1

(xij)1≤i<j≤n ↦ (x2
ij)1≤i<j≤n

Lu(A) = ∑
i,j

uij log(det(Aij)2) − ∑
i,j

uij log ∑
i,j

det(Aij)2 Lu(q) = ∑
i,j

uij log(qij) − ∑
ij

uij log ∑
i,j

qij

q ∈ sGr(2,n)

vs.

Theorem (Huh-Sturmfels, 2014) The number of critical points of  is generically finite and does 

not depend on . This number is called the maximum likelihood degree (ML degree) of .

Lu(q)
u sGr(2,n)

Corollary (Devriendt-F-Reinke-Sturmfels, 2024) The projection determinantal point process 
is the discrete statistical model on the state space         whose underlying algebraic variety 
is the squared Grassmannian .sGr(2,n)

([n]
2 )



Motivating the Maximum Likelihood Degree

1. The more critical points there are, the harder the problem is to solve. The ML degree is an 
algebraic measure of the difficulty of the problem.  

2. When numerically computing the solution to such an optimization problem, a heuristic 
stopping criterion is applied. Knowing the number of solutions a priori means that we don’t 
need to wait until the criterion is met, so the computation is much faster. 

Example The ML degree of  is 3: sGr(2,n)
1

0.786
1.852
1.710
0.643
1.143

,

1
0.341
0.788
0.704
0.257
1.083

,

1
3.093
1.982
1.744
2.855
1.238



Lu(A) = ∑
i,j

uij log(det(Aij)2) − ∑
i,j

uij log ∑
i,j

det(Aij)2

Likelihood Geometry of the Squared Grassmannian

Theorem (F, 2024). The number of complex critical points of the parametric log-likelihood function 

is 2n−2(n − 1)!

Corollary (F, 2024). The ML degree of the squared Grassmannian  is  .sGr(2,n)
(n − 1)!

2
proof idea:

(
1 0 a13 ⋯ a1(n−1) a1n

0 1 a23 ⋯ a2(n−2) a2n) ↦ (
1 0 a13 ⋯ a1(n−1)

0 1 a23 ⋯ a2(n−2))
and compute the Euler characteristic inductively using the deletion map

Apply the following theorem

Theorem (Huh, 2013). If the very affine variety  is smooth of dimension 
, then the ML degree of  is the signed Euler characteristic .

X \ℋ
d X (−1)d χ(X \ℋ)



Real and Positive Solutions

(1 0 1.308 0.802
0 1 0.886 1.361)

(1 0 0.839 −0.507
0 1 0.584 0.888 )

(1 0 1.320 1.690
0 1 1.759 1.408)

1
0.786
1.852
1.710
0.643
1.143

,

1
0.341
0.788
0.704
0.257
1.083

,

1
3.093
1.982
1.744
2.855
1.238

Parametric Critical Points Implicit Critical pointsExample

Theorem (F, 2024) All critical points are real and positive. Every critical point 
is a local maximum of the likelihood function.

× 8
× 8
× 8

proof: Squaring means real parametric critical points imply positive critical points.

The likelihood function                                          is nonnegative and therefore ℓu(A) =
∏i,j det(Aij)2uij

(∑i,j det(Aij)2)
∑ij ui, j

has at least one local maximum in every region, bounded or unbounded, of 
ℝ2(n−2)\⋃

i,j

{det(Aij) = 0} .



Real and Positive Solutions
The space                                            has  connected regions.2n−2(n − 1)!

The regions are in bijection with the possible sign vectors that can arise 
from a vector of Plücker coordinates in . Gr(2,n)

1. Choose how many columns have two different signs (  choices). 
 

2. Permute the last  columns (  choices).  

3. Flip the signs of any of the last  columns (  choices).

n − 1

n − 2 (n − 2)!

n − 2 2n−2

ℝ2(n−2)\⋃
i,j

{det(Aij) = 0}

An = (
1 0 −a13 ⋯ −a1k a1(k+1) ⋯ a1n

0 1 a23 ⋯ a2k a2(k+1) ⋯ a2n)

Claim.



Thank you!
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