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Flag Varieties

Definition. The flag manifold or variety 

 is the space of nested subspaces of dimension  in .k1, …, kr ℝn

Example. A point in .Fl(1,2; 3)

Fl(k1, …, kr; n) = {W1 ⊆ W2 ⊆ ⋯ ⊆ Wr ⊆ ℝn : dim(Wi) = ki, i = 1,…, r}

How can we represent flags 
with polynomial equations?  



Definition. The Stiefel manifold  is the set of orthonormal -frames 

The orthogonal group  is .

Vk,n k

O(n) Vn,n

The Many Lives of Flag Varieties: Stiefel Coordinates

Theorem (F.-Hoşten, 2025). 

dim(Vk,n) = (n
2) − (n − k

2 ) I(Vk,n) = ⟨ZTZ − Idk⟩

The ideal  is a complete intersection. When ,  is prime.I(Vk,n) k < n I(Vk,n)

See also: The Degree of Stiefel Manifolds by Brysiewicz and Gesmundo.

Vk,n = {Z ∈ ℝn×k : ZTZ = Idk} .



The Many Lives of Flag Varieties: Stiefel Coordinates
Definition. The Stiefel manifold  is the set of orthonormal -frames 

The orthogonal group  is .

Vk,n k

O(n) Vn,n

Vk,n = {Z ∈ ℝn×k : ZTZ = Idk} .

Example.  Z = (Z1 Z2) = (
z11 z12
z21 z22
z31 z32

)Fl(1,2; 3) ≅ V2,3/O(1)2

•   

•

Gr(k, n) = Vk,n/O(k)

Fl(k1, …, kr; n) = Vk,n/O(k1) × O(k2 − k1) × ⋯ × O(kr − kr−1)



The Many Lives of Flag Varieties: Projection Coordinates
A linear subspace  is uniquely determined by the orthogonal 
projection onto .

W ⊆ ℝn

W

pGr(k, n) = {P ∈ Sym(ℝn) : P2 = P, trace(P) = k}

Example.  Fl(1,2; 3) Z = (Z1 Z2) = (
z11 z12
z21 z22
z31 z32

)

P1 = Z1ZT
1 P2 = ZZT

projects onto W1 projects onto W2

P2P1 = P1



The Many Lives of Flag Varieties: Projection Coordinates

Theorem (F.-Hoşten, 2025). The projection flag variety  is 
smooth and has prime ideal 

pFl(k1, …, kr; n)

⟨PiPi−1 − Pi−1 : 2 ≤ i ≤ r⟩ + ⟨P2
i − Pi, trace(Pi) − ki : 1 ≤ i ≤ r⟩

Here  are symmetric  matrices. The ambient ring has 

 generators. 

P1, …, Pr n × n

r (n + 1
2 )

See also:   “Optimization on Flag Manifolds” by Ye, Wong, and Lim 

“The Two Lives of the Grassmannian” by Devriendt, F., Reinke, and Sturmfels



The Many Lives of Flag Varieties: Isospectral Coordinates

Z̃

c1
c2

c3
c4

Z̃T : Z̃ ∈ O(4)/O(1) × O(2) × O(1) ={Q ∈ Sym(ℝn) : Q has spectrum (c1, c2, c3, c4)}

Fix .c1 > c2 = c3 > c4

The fact that the set of isospectral matrices parameterizes flag varieties was first observed by Ye 
and Lim in Simple Matrix Models for the Flag, Grassmann, and Stiefel Manifolds.

Goal: represent points in the flag with symmetric matrices.

Fl(1,3; 4) ≅ V3,4/O(1) × O(2) ≅ O(4)/O(1) × O(2) × O(1)
Z = (Z1 Z2 Z3) ↦ Z̃ = (Z1 Z2 Z3 Z4)

Example.  



The Many Lives of Flag Varieties: Isospectral Coordinates

Theorem (F.-Hoşten, 2025). Let  be a flag variety and let  be 
a symmetric matrix of unknowns. Given a generic choice of  

satisfying  for , the variety  is 

smooth and its prime ideal is 

Fl(k1, …, kr; n) X
c1, …, cn

ckj+1 = ⋯ = ckj+1 j = 0,…, r Flc(k1, …, kr; n)

⟨
r

∏
j=1

(X − ckj
Idn), trace(X) −

n

∑
j=1

cj⟩ .

Example. If , , and , then r = 1 c1 = ⋯ = ck1
= 1 ck1+1 = ⋯ = cn = 0

Flc(k1; n) = pGr(k1, n) .Z̃diag(1,…,0)Z̃T = ZZT = P



The Many Lives of Flag Varieties

orthogonal  matrixn × k

list of  
projection matrices

n × n
symmetric  matrixn × n



Algebraic Degree of an Optimization Problem

optimize     

subject to  

f(x)

G(x) = 0

Critical PointsOptimization Problem

Definition. The algebraic degree of an optimization 
problem is the number of critical points.

often -dimensional0

When the variety is not zero dimensional, its degree 
can still give an idea of the complexity of the problem.

rank (Jac(G(x)) ∣ ∇f(x)) = rank Jac(G(x))
G(x) = 0

The algebraic degree of a problem is a proxy for the 
difficulty of correctly solving the problem.



Multi-Eigenvalue Problem

Let  be real, symmetric  matrix. 

Goal: compute an  matrix  such that the 

columns of  are eigenvectors of .

A n × n

n × k Z ∈ Vk,n

Z A

max
Z∈Vk,n

trace(ZT AZ)



Critical Points of the Multi-Eigenvalue Problem

trace(QTZT AZQ) = trace(ZT AZQQT) = trace(ZT AZ)

Let .Q ∈ O(k)

ZTZ = Idk ⟹ QTZTZQ = QTQ = Idk

The optimization problem                               is invariant under the action of .O(k)max
Z∈Vk,n

trace(ZT AZ)



Critical Points of the Multi-Eigenvalue Problem

Theorem (F., Hoşten 2025). Let  be a generic real symmetric  matrix 
and let . The algebraic set of complex critical points of the 
eigenvalue optimization problem is  

                              

where  is an orthonormal eigenbasis of . This algebraic set is a 

disjoint union of  irreducible varieties isomorphic to , and hence its 

dimension is equal to  and its degree is equal to .

A n × n
Z ∈ Vk,n

⨆
{i1,…,ik}∈([n]

k )
{[ui1 ui2 ⋯ uik] Q : Q ∈ O(k)}

q1, …, qn A

(n
k) O(k)

dim(O(k)) deg(O(k)) ⋅ (n
k)



Multi-Eigenvalue Problem in Projection Coordinates

{i1, …, ik}
{i1, …, ik}

max
Z∈Vk,n

trace(ZT AZ)

max
Z∈Vk,n

trace(AZZT)
max

P∈pGr(k,n)
trace(AP)

ZZT ↦ P



Multi-Eigenvalue Problem in Projection Coordinates
Theorem (F.-Hoşten, 2025). Let  be a generic real symmetric  matrix. 
The optimization problem 

has critical point set 

 

where  is an orthonormal eigenbasis of  and algebraic degree .

A n × n

{[ui1 ui2 ⋯ uik][ui1 ui2 ⋯ uik]
T ∣ {i1, …, ik} ∈ ([n]

k )}
u1, …, un A (n

k)

max
P ∈ pGr(k,n)

trace(AP)

Corollary. The linear optimization degree of  is .pGr(k, n) (n
k)

The linear optimization degree of a variety was introduced in Linear Optimization on Varieties 
and Chern Mather Classes by Maxim, Rodriguez, Wang, and Wu.



Multi-Eigenvalue Problem in Isospectral Coordinates

P = ZZT = Z̃ diag(1,…,1,0,…,0) Z̃T X = Z̃ diag(c1, c2, …, cn) Z̃T

max
P∈pGr(k,n)

trace(AP) max
X∈Flc(k;n)

trace(AX)

Theorem (F.-Hoşten, 2025). The critical points of      are the points in  

representing different flag structures on the eigenspaces of . The degree of     is 

Flc(k; n)
A

( n
k1, k2 − k1, …, n − kr) .

Corollary. The linear optimization degree of  isFlc(k; n) ( n
k1, k2 − k1, …, n − kr) .



Heterogeneous Quadratics Minimization Problem

Conjecture. The number of critical points for  is k = 2 8
n−1

∑
j=1

j2 .

min
Z∈Vk,n

k

∑
i=1

ZT
i AiZi

Problem. Fix real symmetric matrices . How many critical points 
does the following optimization problem have?

A1, …, Ak

Z = (Z1 Z2 ⋯ Zk)



Stiefel & Projection Coordinates

min
Z∈Vk,n

k

∑
i=1

ZT
i AiZi

min
Z∈Vk,n

k

∑
i=1

trace(AiZiZT
i )

min
(P1,…,Pn)∈pFl(k;n)

k

∑
i=1

trace(BiPi)

k = (1,2,…, k)

Z = (Z1 Z2 ⋯ Zk) ↦ (Z1ZT
1 , Z1ZT

1 + Z2ZT
2 , … , ZZT) = (P1, P2, …, Pk)

Linear optimization 
degree of pFl(k; n)

Algebraic degree of

min
(P1,…,Pn)∈pFl(k;n)

k

∑
i=1

trace(BiPi)

Algebraic degree of

min
Z∈Vk,n

k

∑
i=1

ZT
i AiZi

==1
2k

Vk,n → pFl(1,2,…, k; n)



Thank you!

arXiv 2505.15969



The Many Lives of Flag Varieties: Plücker Coordinates

Theorem. The variety  in Plücker 
coordinates is defined by the prime ideal generated by the quadrics 

for every pair  and where the sum is over all  obtained by 
exchange the first  of the -subscripts with  of the -subscripts while 
preserving their order. 

Fl(k1, …, kr; n) ⊆ ℙ( n
k1)−1 × ⋯ × ℙ( n

kr)−1

1 ≤ s < t ≤ r (i′ , j′ )
m j m i

xi1,…,iks
xj1,…,jkt

− ∑ xi′ ,…,i′ ks
xj′ 1,…,j′ kt


