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Flag Varieties

Definition. The flag manifold or variety
Flky,....k;n) = {W, C W, C - CW.CR":dim(W)) = k,i=1,...,r)}

is the space of nested subspaces of dimension k;, ..., k.in R".

Example. A point in FI(1,2; 3).

How can we represent flags
with polynomial equations?




The Many Lives of Flag Varieties: Stiefel Coordinates

Definition. The Stiefel manifold V| , is the set of orthonormal k-frames
Vin={ZeR™:Z2"Z=1d;} .
The orthogonal group O(n) is V, .

Theorem (F.-Hosten, 2025).

dim(V, ) = (’;) - (" ; k) I(V,,) =(Z"Z - 1d;)

The ideal I(V, ,) is a complete intersection. When k < n, I(V, ) is prime.

See also: The Degree of Stiefel Manifolds by Brysiewicz and Gesmundo.



The Many Lives of Flag Varieties: Stiefel Coordinates

Definition. The Stiefel manifold V| , is the set of orthonormal k-frames
Vin={ZeR™:Z2"Z=1d;} .
The orthogonal group O(n) is V, .

. Gr(k,n) = V,,/O(k)
. Fl(ky, ..., k;n) =V, JO(k)) X O(ky — ky) X -+ X Ok, — k,_,)

<11 <12
example. FI(1,2;3) = V, 3/0(1)? Z=(Z 2, = (221 222)

31 <32



The Many Lives of Flag Varieties: Projection Coordinates

A linear subspace W C R" is uniguely determined by the orthogonal
projection onto W.

pGr(k,n) = {P € Sym(R"): P? = P, trace(P) = k)

{11 <12
Example. FI(1,2; 3) =24 4, = (sz Zzz)

{31 <32

P, =2ZZ" P,=277" PPy = P,

projects onto W, projects onto W,



The Many Lives of Flag Varieties: Projection Coordinates

Theorem (F.-Hosten, 2025). The projection flag variety pFl(k,, ..., k.;n) is
smooth and has prime ideal

(PP, —P;,_:2<i<ry+ (P/=P,trace(P)—k;: 1 <i<r)

Here Py, ..., P, are symmetric n X n matrices. The ambient ring has

(n + 1)
r , generators.

See also: “Optimization on Flag Manifolds” by Ye, Wong, and Lim

“The Two Lives of the Grassmannian” by Devriendt, F., Reinke, and Sturmfels



The Many Lives of Flag Varieties: Isospectral Coordinates

Goal: represent points in the flag with symmetric matrices.

Example. FI(1,3;4) = V;,/0(1) X O(2) = O(4)/0(1) X O(2) x O(1)
Z=Z 72, )~ 2Z=(Z, Z, Z, 7))

FIx ¢; > ¢4 = ¢3 > ¢4.

7T 7 € 0(4)/0(1) x O(2) x O(1) :{Q e Sym(R") : Q has spectrum (c;, ¢,, ¢, c4)}

The fact that the set of isospectral matrices parameterizes flag varieties was first observed by Ye
and Lim in Simple Matrix Models for the Flag, Grassmann, and Stiefel Manifolds.



The Many Lives of Flag Varieties: Isospectral Coordinates

Theorem (F.-Hosten, 2025). Let Fl(k,, ..., k.; n) be a flag variety and let X be

a symmetric matrix of unknowns. Given a generic choice of ¢y, ..., C,

satisfying Crr1 = = Crp forj =0,...,r, the variety Fl (ki, ..., k.; n) is

smooth and its prime ideal is

n

(ILI (X — cijdn), trace(X) — Z cj) .
j=1

j=1

Example.lfr=1,¢,=--=¢ =1l,and¢ | =+ =¢, =0, then

Zdiag(1,...,002' =772 = P ————» Fl (k;n) = pGr(k,,n).



The Many Lives of Flag Varieties

Plucker

Pz’ k; X2 xil,---,iks — det(Zir"ikS,l-"ks)

— 2
~ trace(X?) e

orthogonal n X kK matrix

Stiefel

S = Zdiag(cy,...,cn) Z7

| Projection > Isospectral
listof n X n S = CnIdn T (ckr _ cn)Pkr Tt (Ckl T Ckz)Pl symmetric n X n matrix
projection matrices

Figure 1: Diagram explaining how to move from one life of the flag variety to another. If
A — B in the diagram, the edge label explains how to write the B coordinates in terms of
the A coordinates. Two of the arrows are bidirectional, meaning that one direction comes
from matrix multiplication and the other comes from a matrix factorization.



Algebraic Degree of an Optimization Problem

Optimization Problem Critical Points

optimize  f(x) rank (Jac(G(x)) | VA(x)) = rank Jac(G(x))

subject to G(x) = 0 Gx)=0

Definition. The algebraic degree of an optimization
problem is the number of critical points.

/ When the variety is not zero dimensional, its degree
can still give an idea of the complexity of the problem.

often O-dimensional

The algebraic degree of a problem is a proxy for the
difficulty of correctly solving the problem.




Multi-Eigenvalue Problem

Let A be real, symmetric n X n matrix.

Goal: compute an n X kK matrix Z € V,_, such that the

columns of Z are eigenvectors of A.

max trace(Z' AZ)
/€ Vk,n



Critical Points of the Multi-Eigenvalue Problem

The optimization problem gl?/x trace(Z' AZ) is invariant under the action of O(k).
S k.,n

Let O € O(k).

trace(Q1Z' AZQ) = trace(Z' AZQQ") = trace(Z' AZ)

7'7=1d, = 0'2'720=0'0 =14,



Critical Points of the Multi-Eigenvalue Problem

Theorem (F., Hosten 2025). Let A be a generic real symmetric n X n matrix

and let Z € V, .. The algebraic set of complex critical points of the
eigenvalue optimization problem is

||l w10 0 Q€O
{il,...,ik}e<[zl)

where g, ..., g, is an orthonormal eigenbasis of A. This algebraic set is a

disjoint union of <Z> irreducible varieties isomorphic to O(k), and hence its

dimension is equal to dim(O(k)) and its degree is equal to deg(O(k)) - (Z)



Multi-Eigenvalue Problem in Projection Coordinates

max trace(Z' AZ)

Zev,, > max trace(AP)
T T PepGr(k,n)

max trace(AZZ") 77" — P

ZEVk,n




Multi-Eigenvalue Problem in Projection Coordinates

Theorem (F.-Hosten, 2025). Let A be a generic real symmetric n X n matrix.
The optimization problem

max trace(AP)
P € pGr(k,n)
has critical point set

{[ull ty, oo il vy, - 1] i i} € ([Z])}

n
where u,, ..., u, is an orthonormal eigenbasis of A and algebraic degree ( )

k
n
Corollary. The linear optimization degree of pGr(k, n) is (k) .

The linear optimization degree of a variety was introduced in Linear Optimization on Varieties
and Chern Mather Classes by Maxim, Rodriguez, Wang, and Wu.



Multi-Eigenvalue Problem in Isospectral Coordinates

P =77" =7 diag(1,...,1,0,...,0) Z* X = 7 diag(cy, c5, ...,c,) Z!
max trace(AP) % max trace(AX)
PepGr(k,n) XeFl . (k;n)

Theorem (F.-Hosten, 2025). The critical points of % are the points in Fl (k; n)

representing different flag structures on the eigenspaces of A. The degree of %k is

CR—
kl,kz—kl,...,n—kr |

n
Corollary. The linear optimization degree of Fl (K; n) is (k ' L ) -
1> ™2

—kl,...,n— ,



Heterogeneous Quadratics Minimization Problem

Problem. Fix real symmetric matrices A, ..

k

.,A;. How many critical points
does the following optimization problem have?

min ) ZTAZ, Z=(Z, Z, - Z)
Z&Vy,
n=2n=3|n=4|n=5|n=6|n=7\n=8|n=9
k=2 8 | 40 | 112 | 240 | 440 | 728 | 1120 | 1632
k=3 80 | 960 | 5536 | 21440 | 64624
k=4 1920 | 57216

Table 1: Degrees of the heterogeneous quadratics minimization problem for small &, n.

n—1
Conjecture. The number of critical points for k = 2is 8 ) j>.
j=1



Stiefel & Projection Coordinates
Vk,n —> pF](l,Z, ‘oo k, n)

Z=Z, 72, - Zy)w~ (Z)Z], 2,2 +7,Z,, ..., ZZ") = (P, P,, ..., P})

k

k
: I
Joh Z Z; AiZ; min Z trace(B.P;)
kn ;1 —— (Py,...,P,)epFl(k;n) 1
k
min ) trace(A,ZZ k =(1,2,...,k)
ZeV, =
1 Algebraic degree of ~ Algebraic degree of ~ Linear optimization
— k — k —
2k min Z Z'AZ min 2 trace(B,P;) degree of pFl(k, I”l)

Zev,, (Pys....P,)EPF(kin)

=1 =1



Thank you!

arXiv 2505.15969



The Many Lives of Flag Varieties: Plucker Coordinates

no)_1 ny_1
Theorem. The variety Fl(k;, ..., k;n) C I ("1> X oo X | <"") in Plicker
coordinates is defined by the prime ideal generated by the quadrics

sl J1 - Z lkS J1

for every pair 1 < s <t < rand where the sum is over all (i, ') obtained by

exchange the first m of the j-subscripts with m of the i-subscripts while
preserving their order.



